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The chemistry of unsaturated cyclic compounds consisting of

during the past five yeafs In 1995, we reported the first
successful synthesis of cyclotrigermene®®;), analogous to
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cleophiles. At first we examined the reaction bfTFPB with
t-BuzSiNa in oxygen-free dry diethyl ether at78 °C. The
reaction mixture immediately turned into a dark-red solution due

Mo the quantitative formation &a? (Scheme 1). Unsymmetrically

substituted cyclotrigermerZb was isolated with-Bu;GeNa at a
75% vyield? The lithium derivatives, (MgSis)sSiLi and (Mes-

cyclopropene (RC3) that has an unsaturated three-membered ring Si):GeLi, also reacted readily with TFPB to produce2c (86%)

skeleton, from the reaction of Ge&lioxane witht-Bu;SiNa and
t-BusGelLi® We have subsequently shown that cyclotrigermene
is a source of cyclotrigermenium ion {8e;)*, which has been
a long sought free germyl cation with ar2lectron systerfi.

and 2d (73%)2'° However, a small nucleophile, BSilLi,
produced a complicated mixture. A carbon nucleophile, MesLi,
also readily reacted to give mesityl-substituted cyclotrigermene
2e with an 80% yield® The present method apparently offers a

Shortly thereafter, a cyclotrigermenyl radical was synthesized by ,omising route for the synthesis of new unsaturated ring systems.

the dehalogenation of ArGeCl (& 2,6-MesCgHs, Mes= 2,4,6-
trimethylphenyl) with potassium graphite (K In 1999, both

Kira et al. and our group independently reported the synthesis of

cyclotrisilene derivatives (fSis) by the alkali metal (KGor Na)
induced condensation of the appropriate halosil&rfie$he
cyclotristannene derivative ¢Brs) was also recently reportéd.

However, the strategy adopted for the synthesis of unsaturated
ring systems of the heavier Group 14 elements was not a general;
one, and the mechanism for the formation of the unsaturated ring ;|
is currently not understood. Here, we report on a versatile and

simple method for the synthesis of symmetrically and unsym-
metrically substituted cyclotrigermenes. Moreover, we report on
the discovery of a cis configuration around the germantum
germanium double bond (G&5e).

Good yields of cyclotrigermenes were obtained from the
reactions of tris(trirert-butylsilyl)cyclotrigermenium tetrakis[3,5-
bis(trifluoromethyl)phenyl]boratel¢ TFPB;* TFPB = tetrakis-
[3,5-bis(trifluoromethyl)phenyl]borate) with the appropriate nu-
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The geometry around the &&e double bond of is quite
interesting since the double-bond systems of the heavier Group
14 elements are generally characterized by a trans-bent (or twist)
arrangement.However, the present system enables a cis-bent
geometry around the GeGe double bond by the steric and
electronic effects.

An X-ray crystallographic analysis @t established the exact
ructure, as shown in Figure'1The three-membered ring is
most an isosceles triangle with bond angles of 62°9@3.3-
(2)°, and 53.8(29. The geometry around the &&e double bond
is not planar, as determined by the torsional angles of &ig3—
Ge2-Gel and Si6Ge2-Ge3-Gel, which are 167.5(2)and
175.6(2), respectively. This shows that the=6@&e double bond

(9) The mass spectrum @ showed no molecular ion peaks, but the ion
peaks attributable to the cyclotrigermenim ion by loss of the substituent
attached to saturated germanium at@ix. dark red crystals; mp 125127
°C dec;'H NMR (CeDs) 0 1.39 (s, 54 H), 1.51 (s, 27 H), 1.57 (s, 27 FiC
NMR (CgDs) 0 26.1, 28.4, 31.5, 32.3, 34.5, 348Si NMR (CsD¢) 0 36.5,
49.9; MS (El, 70 eV) 809824 (M" — G€eBUs) for CsgHs:GesSiz. Anal. Calcd
for CsgH106Ge&sSis: C, 54.39; H, 10.27. Found: C, 54.49; H, 10.@2: dark
red crystals; mp 153155°C dec;*H NMR (Cg¢Dg) 6 0.53 (s, 27 H), 1.39 (s,

54 H), 1.45 (s, 27 H)33C NMR (CsDg) 0 6.7, 26.0, 27.3, 32.4, 34.6°Si
NMR (CeDg) 6 —0.5, 26.4, 49.5; MS (El, 70 eV) 86824 (M" — Ge(SiMe)s)

for C3eHs1GesSis. Anal. Caled for GsHi0sGesSie: C, 48.77; H, 9.82. Found:

C, 48.47; H, 9.542e orange crystals; mp 142145 °C; *H NMR (CgDg) 0

1.38 (s, 54 H), 1.39 (s, 27 H), 2.04 (s, 3 H), 2.97 (s, 6 H), 6.79 (s, 29);
NMR (C¢Dg) 0 20.9, 25.9, 27.3, 28.1, 32.3, 33.0, 128.6, 136.7, 147.0, 148.8;
295) NMR (CsDg) 6 20.7, 49.4; MS (El, 70 eV) 729742 (M* — SiBus) for
Cs3HesGesSho. The structure oRe was also characterized by X-ray crystal-
lography.

(10) Typically, 2c was synthesized by the following procedure. The dry
degassed ED was introduced by vacuum transfer to a mixturelofFPB
(71 mg, 0.042 mmol) and (M8i);SiLi-3thf (20 mg, 0.042 mmol). The reaction
mixture was stirred for 3 min at 100°C. Slow warming to room temperature
afforded a red solution. The solvent was removed under vacuum and the
residue extracted with hexane and filtered. After evaporation of hexane, a red
solid of 2cwas isolated (38 mg, 86%); mp 14850°C dec;*H NMR (CgDs)

0 0.52 (s, 27 H), 1.40 (s, 54 H), 1.45 (s, 27 PAC NMR (CsDe) 6 6.3, 26.1,
27.2, 32.4, 34.0°Si NMR (CsDg) 6 —87.9,—6.5, 28.1, 50.4; MS (EI, 70
for CseHs1GesSis. Anal. Caled for GsHi06GesSiz: C, 50.81; H, 10.23. Found:
C, 50.62; H, 9.94.

(11) Crystal data foRc at 120 K: MF= CysH10dGe;Siz, MW = 1063.78,
orthorhombic,P2;,2,2; (No. 19),a = 12.4420(6)Ab = 18.6350(7) Ac =
28.370(1) A,V = 6577.8(5) R, Z = 4, Dcaca = 1.074 gem?. The final R
factor was 0.064 for 7281 reflections with > 3o0(l,) (Rw= 0.142 for all
data, 8618 reflections).
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Figure 1. ORTEP drawing oRc. Hydrogen atoms are omitted for clarity.
Selected bond lengths (A): GeGe2 2.507(2), GetGe3 2.498(2),
Ge2-Ge3 2.264(2), Ge1Sil 2.510(3), GetSi5 2.510(3), Ge2Si6
2.462(3), Ge3Si7 2.438(3). Selected bond angles (deg): Gé21—
Ge3 53.8(1), Ge1Ge2-Ge3 62.9(1), GetGe3-Ge2 63.3(1), Sit
Gel-Si5 119.7(1). Selected torsion angles (deg): -Sb£3-Ge2-Gel
167.5 (2), Si6-Ge2-Ge3-Gel 175.6(2), Si6Ge2-Ge3-Si7 8.1(2).
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Figure 2. Schematic representation B€ (side view).

has a cis-bent geometry with folding angles of 2Zdy the Ge3

atom and 4.4 for the Ge2 atom (Figure 2). On the other hand,

tetrakis(tritert-butylsilyl)cyclotrigermeneZa) has a planar Ge
Ge double bond.The Ge=Ge bond length ofcis 2.264(2) A,

Communications to the Editor

8.8° and 5.8 for Ge3 and Ge2 atoms, respectively, and the
torsional angles are 172.2or Si7—Ge3-Ge2-Gel and 1742

for Si6—Ge2-Ge3-Gel. No energy minimum was found for the
trans-bent form. Thus, the cis-bent geometryois apparently
caused by the steric and/or electronic effects of the substituents
at the saturated germanium atom in the three-membered ring, and
not by a crystal packing force.

The double-bond systems of the heavier Group 14 elements,
in particular, digermenes and distannenes, show marked trans-
folding of the substituents. For example, trans-bent angles-ef 35
47° have been calculated for,8e=GeH,®> which have been
corroborated by experimental resuftélowever, the introduction
of electropositive substituents, such aSRyroups, leads to rather
small trans-bent anglés.We have achieved the unprecedented
cis-bent Ge=Ge double bond by the introduction of electropositive
and bulky substituents to the skeleton of cyclotrigermene.

It is quite interesting to see which substituents will be removed
by the oxidation of unsymmetrically substituted cyclotrigermenes
with PhkCt-BAr,. The reaction of2c with PhCT-TFPB in
benzene at room temperature led to the exclusive formation of
1-TFPB with an 80% vyield. The elimination of the tris-
(trimethylsilyl)silyl group occurred selectively to foriaTFPB,
probably due to the stability of the resultingBusSiGe}x" and
(MesSi)sSi* species. The reactions 2l and2ewith PhC™-TFPB
also exclusively producet TFPB.
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and Ge-Ge bond lengths are 2.507(2) and 2.498(2) A. The bond ja9923080

lengths of Ge%Sil (2.510(3) A) and Ge1Si5 (2.510(3) A),

which are attached to saturated germanium atom, are s.tretchec&e

(14) For example, the optimized bond lengths (A) and angles (deg) of the
ntral three-membered ring are 2.542 (6&k2), 2.532 (GetGe3), 2.257

significantly, as a result of the steric congestion. The bond lengths (Ge2-Ge3), 52.8 (Ge2Gel-Ge3), 63.4 (GetGe2-Ge3), and 63.8 (Gel

of Ge2-Si6 and Ge3-Si7, which are attached to the &6e

double bond, are 2.462(3) and 2.438(3) A, respectively. These

2re somewhat elongated relative to the normal one (2389
)_12
The cis-bent GeGe double bond ir2c is not due to the

Ge3-Ge2).
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